Methods of the Synthesis of Silicon-Containing Nanoparticles Intended for Nucleic Acid Delivery

Authors

  • A. S. Levina Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia; Institute of Chemical Biology and Fundamental Medicine, SB RAS, pr. Ak. Lavrent’eva 8, Novosibirsk 630090, Russia
  • M. N. Repkova Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia; Institute of Chemical Biology and Fundamental Medicine, SB RAS, pr. Ak. Lavrent’eva 8, Novosibirsk 630090, Russia
  • Z. R. Ismagilov Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia; Boreskov Institute of Catalysis, SB RAS, pr. Ak. Lavrent’eva 5, Novosibirsk 630090, Russia
  • V. F. Zarytova Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia; Institute of Chemical Biology and Fundamental Medicine, SB RAS, pr. Ak. Lavrent’eva 8, Novosibirsk 630090, Russia

DOI:

https://doi.org/10.18321/ectj720

Keywords:

synthesis, silicon-containing nanoparticles, nucleic acids, delivery in cells

Abstract

A promising new approach to the treatment of viral infections and genetic diseases associated with damaged or foreign nucleic acids in the body is gene therapy, i.e., the use of antisense oligonucleotides, ribozymes, deoxyribozymes, siRNA, plasmid DNA, etc. (therapeutic nucleic acids). Selective recognition of target nucleic acids by these compounds based on highly specific complementary interaction can minimize negative side effects, which occur with currently used low molecular weight drugs. To apply a new generation of therapeutic agents in medical practice, it is necessary to solve the problem of their delivery into cells. Silicon-containing nanoparticles are considered as promising carriers for this purpose due to their biocompatibility, low toxicity, ability to biodegradation and excretion from the body, as well as the simplicity of the synthesis and modification. Silicon-containing nanoparticles are divided into two broad categories: solid (nonporous) and mesoporous silicon nanoparticles (MSN). This review gives a brief overview of the creation of mesoporous, multilayer, and other silicon-based nanoparticles. The publications concerning solid silicon-organic nanoparticles capable of binding and delivering nucleic acids into cells are discussed in more detail with emphasis on methods for their synthesis. The review covers publications over the past 15 years, which describe the classical Stöber method, the microemulsion method, modification of commercial silica nanoparticles, and other strategies.

References

(1). P.Y. Teo, W. Cheng, J.L. Hedrick, Y.Y. Yang, Adv. Drug Deliv. Rev. 98 (2016) 41–63. Crossref DOI: https://doi.org/10.1016/j.addr.2015.10.014

(2). A. Mescalchin, T. Restle, Molecules 16 (2011) 1271–1296. Crossref DOI: https://doi.org/10.3390/molecules16021271

(3). A.S. Wierzbicki, A. Viljoen, Expert Opin. Biol. Ther. 16 (2016) 1125–1134. Crossref DOI: https://doi.org/10.1080/14712598.2016.1196182

(4). G. McClorey, M.J. Wood, Curr. Opin. Pharmacol. 24 (2015) 52–58. Crossref DOI: https://doi.org/10.1016/j.coph.2015.07.005

(5). R.L. Juliano, X. Ming, O. Nakagawa, Bioconjug. Chem. 23 (2012) 147–157. Crossref DOI: https://doi.org/10.1021/bc200377d

(6). X. Ming, B. Laing, Adv. Drug. Deliv. Rev. 87 (2015) 8189. Crossref DOI: https://doi.org/10.1016/j.addr.2015.02.002

(7). M. Jafari, M. Soltani, S. Naahidi, D.N. Karunaratne, P. Chen, Curr. Med. Chem. 19 (2012) 197208. Crossref DOI: https://doi.org/10.2174/092986712803414141

(8). M.B. de Jesus, I.S. Zuhorn, J. Control. Release 201 (2015) 1–13. Crossref DOI: https://doi.org/10.1016/j.jconrel.2015.01.010

(9). T. Lehto, K. Ezzat, M.J. Wood, S. El Andaloussi, Adv. Drug Deliv. Rev. 106 (2016) 172–182. Crossref DOI: https://doi.org/10.1016/j.addr.2016.06.008

(10). S. Parveen, R. Misra, S.K. Sahoo, Nanomedicine 8 (2012) 147–166. Crossref DOI: https://doi.org/10.1016/j.nano.2011.05.016

(11). A. Samanta, I.L. Medintz, Nanoscale 8 (2016) 9037–9095. Crossref DOI: https://doi.org/10.1039/C5NR08465B

(12). D. Gozuacik, H.F. Yagci-Acar, Y. Akkoc, A. Kosar, A.I. Dogan-Ekici, S. Ekici, J. Biomed. Nanotechnol. 10 (2014) 1751–1783. Crossref DOI: https://doi.org/10.1166/jbn.2014.1935

(13). I. Roy, M.K. Stachowiak, E.J. Bergey, Nanomedicine 4 (2008) 89–97. Crossref DOI: https://doi.org/10.1016/j.nano.2008.01.002

(14). Y. Liu, C. Lou, H. Yang, M. Shi, H. Miyoshi, Curr. Cancer Drug Targets 11 (2011) 156–163. Crossref DOI: https://doi.org/10.2174/156800911794328411

(15). V.V. Annenkov, E.N. Danilovtseva, V.A. Pal’shin, O.N. Verkhozina, S.N. Zelinskiya, U.M. Krishnanb, RSC Adv. 7 (2017) 20995– 21027. Crossref DOI: https://doi.org/10.1039/C7RA01310H

(16). A. Liberman, N. Mendez, W.C. Trogler, A.C. Kummel, Surf. Sci. Rep. 69 (2014) 132–158. Crossref DOI: https://doi.org/10.1016/j.surfrep.2014.07.001

(17). T.Y. Cheang, B. Tang, A.W. Xu, G.Q. Chang, Z.J. Hu, W.L. He, Z.H. Xing, J.B. Xu, M. Wang, S.M. Wang, Int. J. Nanomedicine 7 (2012) 1061–1067. Crossref DOI: https://doi.org/10.2147/IJN.S28267

(18). S. Sripanyakorn, R. Jugdaohsingh, R.P.H. Thompson, J.J. Powell, Nutrition Bull. 30 (2005) 222–230. Crossref DOI: https://doi.org/10.1111/j.1467-3010.2005.00507.x

(19). J.H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Nat. Mater. 8 (2009) 331–336. Crossref DOI: https://doi.org/10.1038/nmat2398

(20). Q. He, Z. Zhang, F. Gao, Y. Li, J. Shi, Small 7 (2011) 271–280. Crossref DOI: https://doi.org/10.1002/smll.201001459

(21). G. Xie, J. Sun, G. Zhong, L. Shi, D. Zhang, Arch. Toxicol. 84 (2010) 183–190. Crossref DOI: https://doi.org/10.1007/s00204-009-0488-x

(22). J.S. Souris, C-H. Lee, S-H. Cheng, C-T. Chen, C-S. Yang, J-A. Ho, C-Y. Mou, L-W. Lo, Biomaterials 31 (2010) 5564–5574. Crossref DOI: https://doi.org/10.1016/j.biomaterials.2010.03.048

(23). C. Guo, R.A. Gemeinhart, Mol. Pharm. 2 (2004) 309–316. Crossref DOI: https://doi.org/10.1021/mp049969a

(24). Y. Piao, A. Burns, J. Kim, U. Wiesner, T. Hyeon, Adv. Funct. Mater. 18 (2008) 3745–3758. Crossref DOI: https://doi.org/10.1002/adfm.200800731

(25). F. Tang, L. Li, D. Chen, Adv. Mater. 24 (2012) 1504–1534. Crossref DOI: https://doi.org/10.1002/adma.201104763

(26). M. Manzano, M. Colilla, M. Vallet-Regí, Expert. Opin. Drug Deliv. 6 (2009) 1383–1400. Crossref DOI: https://doi.org/10.1517/17425240903304024

(27). N.A. Keasberry, C.W. Yapp, A. Idris, Biochemistry (Mosc). 82 (2017) 655–662. Crossref DOI: https://doi.org/10.1134/S0006297917060025

(28). N.Ž. Knežević, J.O. Durand, Nanoscale 7 (2015) 2199–2209. Crossref DOI: https://doi.org/10.1039/C4NR06114D

(29). I.I. Slowing, B.G. Trewyn, S. Giri, V.S.-Y. Lin, Adv. Funct. Mater. 17 (2007) 1225–1236. Crossref DOI: https://doi.org/10.1002/adfm.200601191

(30). L. Tang, J. Cheng, Nano Today 8 (2013) 290– 312. Crossref DOI: https://doi.org/10.1016/j.nantod.2013.04.007

(31). J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Beilstein J. Nanotechnol. 9 (2018) 1050–1074. Crossref DOI: https://doi.org/10.3762/bjnano.9.98

(32). W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26 (1968) 62–69. Crossref DOI: https://doi.org/10.1016/0021-9797(68)90272-5

(33). S.V. Lazareva, N.V. Shikina, L.E. Tatarova, Z.R. Ismagilov, Eurasian Chemico-Technological Journal 19 (2017) 295–302. Crossref DOI: https://doi.org/10.18321/ectj677

(34). K.D. Hartlen, A.P.T. Athanasopoulos, V. Kitaev, Langmuir 24 (2008) 1714–1720. Crossref DOI: https://doi.org/10.1021/la7025285

(35). M. Nakamura, K. Ishimura, Langmuir 24 (2008) 5099–5108. Crossref DOI: https://doi.org/10.1021/la703395w

(36). M. Nakamura, K. Ishimura, J. Phys. Chem. C 111 (2007) 18892–18898. Crossref DOI: https://doi.org/10.1021/jp075798o

(37). M. Nakamura, K. Ishimura, Langmuir 24 (2008) 12228–12234. Crossref DOI: https://doi.org/10.1021/la801950q

(38). M. Nakamura, M. Shono, K. Ishimura, Anal. Chem. 79 (2007) 6507–6514. Crossref DOI: https://doi.org/10.1021/ac070394d

(39). E.W. Choi, H.C. Koo, I.S. Shin, Y.J. Chae, J.H. Lee, S.M. Han, S.J. Lee, D.H. Bhang, Y.H. Park, C.W. Lee, H.Y. Youn, Exp. Hematol. 36 (2008) 1091–1097. Crossref DOI: https://doi.org/10.1016/j.exphem.2008.04.002

(40). E.W. Choi, I.S. Shin, Y.J. Chae, H.C. Koo, J.H. Lee, T.H. Chung, Y.H. Park, D.Y. Kim, C.Y. Hwang, C.W. Lee, H.Y. Youn, Exp. Hematol. 36 (2008) 807–815. Crossref DOI: https://doi.org/10.1016/j.exphem.2008.01.007

(41). A.S. Levina, M.N. Repkova, N.V. Shikina, Z.R. Ismagilov, S.A. Yashnik, D.V. Semenov, Yu.I. Savinovskaya, N.A. Mazurkova, I.A. Pyshnaya, V.F. Zarytova, Beilstein J. Nanotechnol. 9 (2018) 2516–2525. Crossref DOI: https://doi.org/10.3762/bjnano.9.234

(42). C. Tojo, M. de Dios, F. Barroso, Materials 4 (2011) 55–72. Crossref DOI: https://doi.org/10.3390/ma4010055

(43). J. Peng, X. He, K. Wang, W. Tan, H. Li, X. Xing, Y. Wang, Nanomedicine 2 (2006) 113– 120. Crossref DOI: https://doi.org/10.1016/j.nano.2006.04.003

(44). X.X. He, K. Wang, W. Tan, B. Liu, X. Lin, C. He, D. Li, S. Huang, J. Li, J. Am. Chem. Soc. 125 (2003) 7168–7169. Crossref DOI: https://doi.org/10.1021/ja034450d

(45). P. Zhang, T.Y. Wang, H.M. Xiong, J.L. Kong, Talanta 127 (2014) 43–50. Crossref DOI: https://doi.org/10.1016/j.talanta.2014.03.045

(46). I. Roy, T.Y. Ohulchanskyy, D.J. Bharali, H.E. Pudavar, R.A. Mistretta, N. Kaur, P.N. Prasad, Proc. Natl. Acad. Sci. USA 102 (2005) 279–284. Crossref DOI: https://doi.org/10.1073/pnas.0408039101

(47). D.J. Bharali, I. Klejbor, E.K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E.J. Bergey, P.N. Prasad, M.K. Stachowiak, Proc. Natl. Acad. Sci. USA 102 (2005) 11539–11544. Crossref DOI: https://doi.org/10.1073/pnas.0504926102

(48). I. Klejbor, E.K. Stachowiak, D.J. Bharali, I. Roy, I. Spodnik, J. Morys, E.J. Bergey, P.N. Prasad, M.K. Stachowiak, J. Neurosci. Methods 165 (2007) 230–243. Crossref DOI: https://doi.org/10.1016/j.jneumeth.2007.06.011

(49). R. Kumar, I. Roy, T.Y. Ohulchanskyy, L.N. Goswami, A.C. Bonoiu, E.J. Bergey, K.M. Tramposch, A. Maitra, P.N. Prasad, ACS Nano 2 (2008) 449–456. Crossref DOI: https://doi.org/10.1021/nn700370b

(50). R. Kumar, I. Roy, T.Y. Ohulchanskky, L.A. Vathy, E.J. Bergey, M. Sajjad, P.N. Prasad ACS Nano 4 (2010) 699–708. Crossref DOI: https://doi.org/10.1021/nn901146y

(51). J. Liu, F. Erogbogbo, K.T. Yong, L. Ye, J. Liu, R. Hu, H. Chen, Y. Hu, Y. Yang, J. Yang, I. Roy, N.A. Karker, M.T. Swihart, P.N. Prasad, ACS Nano 7 (2013) 7303–7310. Crossref DOI: https://doi.org/10.1021/nn4029234

(52). G. Chen, I. Roy, C. Yang, P.N. Prasad, Chem. Rev. 116 (2016) 2826–2885. Crossref DOI: https://doi.org/10.1021/acs.chemrev.5b00148

(53). T. Yokoi, Y. Sakamoto, O. Terasaki, Y. Kubota, T. Okubo, T. Tatsumi, J. Am. Chem. Soc. 128 (2006) 13664–13665. Crossref DOI: https://doi.org/10.1021/ja065071y

(54). X. Li, Y. Chen, M. Wang, Y. Ma, W. Xia, H. Gu, Biomaterials 34 (2013) 391–401. Crossref DOI: https://doi.org/10.1016/j.biomaterials.2011.08.068

(55). Z. Li, S. Zhu, K. Gan, Q. Zhang, Z. Zeng, Y. Zhou, H. Liu, W. Xiong, X. Li, G. Li, J. Nanosci. Nanotechnol. 5 (2005) 1199–1203. Crossref DOI: https://doi.org/10.1166/jnn.2005.220

(56). S.G. Zhu, J.J. Xiang, X.L. Li, S.R. Shen, H.B. Lu, J. Zhou, W. Xiong, B.C. Zhang, X.M. Nie, M. Zhou, K. Tang, G.Y. Li, Biotechnol. Appl. Biochem. 39 (2004) 179–187. Crossref DOI: https://doi.org/10.1042/BA20030077

(57). C. Kneuer, M. Sameti, E.G. Haltner, T. Schiestel, H. Schirra, H. Schmidt, C.M. Lehr, Int. J. Pharm. 196 (2000) 257–261. Crossref DOI: https://doi.org/10.1016/S0378-5173(99)00435-4

(58). M. Sameti, G. Bohr, M.N. Ravi Kumar, C. Kneuer, U. Bakowsky, M. Nacken, H. Schmidt, C.M. Lehr, Int. J. Pharm. 266 (2003) 51–60. Crossref DOI: https://doi.org/10.1016/S0378-5173(03)00380-6

(59). J.A. Harding, C.M. Engbers, M.S. Newman, N.I. Goldstein, S. Zalipsky, Biochim. Biophys. Acta 1327 (1997) 181–192. Crossref DOI: https://doi.org/10.1016/S0005-2736(97)00056-4

(60). M. Abdelmouleh, S. Boufi, A. Ben Salah, M. Naceur Belgacem, A. Gandini, Langmuir 18 (2002) 3203–3208. Crossref DOI: https://doi.org/10.1021/la011657g

(61). Z. Csogor, M. Nacken, M. Sameti, C.M. Lehr, H. Schmidt, Mat. Sci. Eng. C 23 (2003) 93–97. Crossref DOI: https://doi.org/10.1016/S0928-4931(02)00238-2

(62). M.N. Repkova, A.S. Levina, E.I. Filippova, V.F. Zarytova, Sovremennye tendencii razvitiya nauki i tekhnologii [Modern trends in the development of science and technology] 8 (1) (2016) 32–38 (in Russian).

(63). A. Levina, I. Pyshnaya, M. Repkova, V. Rar, V. Zarytova, Biotechnol. J. 7 (2007) 879–885. Crossref DOI: https://doi.org/10.1002/biot.200700027

(64). A. Levina, E. Mikhaleva, V. Zarytova, Nucleoside Nucleotide Nucleic Acids 23 (2004) 931–934. Crossref DOI: https://doi.org/10.1081/NCN-200026043

(65). I.I. Slowing, J.L. Vivero-Escoto, C.W. Wu, V.S. Lin, Adv. Drug. Deliv. Rev. 60 (2008) 1278– 1288. Crossref DOI: https://doi.org/10.1016/j.addr.2008.03.012

(66). C. Bharti, U. Nagaich, A.K. Pal, N. Gulati, Int. J. Pharm. Invest. 5 (2015) 124–133. Crossref DOI: https://doi.org/10.4103/2230-973X.160844

(67). D.R. Radu, C.-Y. Lai, K. Jeftinija, E.W. Rowe, S. Jeftinija, V.S.Y. Lin, J. Am. Chem. Soc. 126 (2004) 13216–13217. Crossref DOI: https://doi.org/10.1021/ja046275m

(68). I. Slowing, B.G. Trewyn, V.S.Y. Lin, J. Am. Chem. Soc. 128 (2006) 14792–14793. Crossref DOI: https://doi.org/10.1021/ja0645943

(69). Y. Zhao, J.L. Vivero-Escoto, I.I. Slowing, B.G. Trewyn, V.S. Lin, Expert. Opin. Drug Deliv. 7 (2010) 1013–1029. Crossref DOI: https://doi.org/10.1517/17425247.2010.498816

(70). F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. Int. 45 (2006) 3216–3251. Crossref DOI: https://doi.org/10.1002/anie.200503075

(71). T. Asefa, Z. Tao, Can. J. Chem. 90 (2012) 1015– 1031. Crossref DOI: https://doi.org/10.1139/v2012-094

(72). A.L. Doadrio, A.J. Salinas, J.M. Sánchez- Montero, M. Vallet-Regí, Curr. Pharm. Des. 21 (2015) 6213–6819. Crossref DOI: https://doi.org/10.2174/1381612822666151106121419

(73). S.H. Wu, C.Y. Mou, H.P. Lin, Chem. Soc. Rev. 42 (2013) 3862–3875. Crossref DOI: https://doi.org/10.1039/c3cs35405a

(74). Q. Huo, D.I. Margolese, G.D. Stucky, Chem. Mater. 8 (1996) 1147–1160. Crossref DOI: https://doi.org/10.1021/cm960137h

(75). C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992) 710–712. Crossref DOI: https://doi.org/10.1038/359710a0

(76). V. Antochshuk, M. Jaroniec, Chem. Mat. 12 (2000) 2496–2501. Crossref DOI: https://doi.org/10.1021/cm000268p

(77). L. Jun, F. Xiangdong, E.F. Glen, Adv. Mater. 10 (1998) 161–165. Crossref DOI: https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<161::AID-ADMA161>3.0.CO;2-Q

(78). B. Muñoz, A. Rámila, J. Pérez-Pariente, I. Díaz, M. Vallet-Regí, Chem. Mat. 15 (2003) 500–503. Crossref DOI: https://doi.org/10.1021/cm021217q

(79). S. Moudgil, J.Y. Ying, Adv. Mater. 19 (2007) 3130–3135. Crossref DOI: https://doi.org/10.1002/adma.200701969

(80). M. Fujiwara, K. Shiokawa, K. Hayashi, K. Morigaki, Y. Nakahara, J. Biomed. Mater. Res. A. 81 (2007) 103–112. Crossref DOI: https://doi.org/10.1002/jbm.a.31021

(81). T. Suma, K. Miyata, Y. Anraku, S. Watanabe, R.J. Christie, H. Takemoto, M. Shioyama, N. Gouda, T. Ishii, N. Nishiyama, K. Kataoka, ACS Nano 6 (2012) 6693–6705. Crossref DOI: https://doi.org/10.1021/nn301164a

(82). N. Gouda, K. Miyata, R.J. Christie, T. Suma, A. Kishimura, S. Fukushima, T. Nomoto, X. Liu, N. Nishiyama, K. Kataoka, Biomaterials 34 (2013) 562–570. Crossref DOI: https://doi.org/10.1016/j.biomaterials.2012.09.077

(83). J. Liu, A. Stace-Naughton, C.J. Brinker, Chem. Commun. (Camb) 34 (2009) 510–512. Crossref DOI: https://doi.org/10.1039/b911472f

(84). K.L. Young, A.W. Scott, L. Hao, S.E. Mirkin, G. Liu, C.A. Mirkin, Nano Lett. 12 (2012) 3867– 3871. Crossref DOI: https://doi.org/10.1021/nl3020846

(85). K. Miyata, N. Gouda, H. Takemoto, M. Oba, Y. Lee, H. Koyama, Y. Yamasaki, K. Itaka, N. Nishiyama, K. Kataoka, Biomaterials 17 (2010) 4764–4770. Crossref DOI: https://doi.org/10.1016/j.biomaterials.2010.02.033

(86). T. Coradin, O. Durupthy, J. Livage, Langmuir 18 (2002) 2331–2336. Crossref DOI: https://doi.org/10.1021/la011106q

(87). G. Bhakta, R.K. Sharma, N. Gupta, S. Cool, V. Nurcombe, A. Maitra, Nanomedicine 4 (2011) 472–479. Crossref DOI: https://doi.org/10.1016/j.nano.2010.12.008

(88). Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, S. Wang, Nanomed. Nanotechnol. Biol. Med. 11 (2015) 313–327. Crossref DOI: https://doi.org/10.1016/j.nano.2014.09.014

(89). W. Cha, R. Fan, Y. Miao, Y. Zhou, C. Qin, X. Shan, X. Wan, J. Li, Molecules 22 (2017) E782. Crossref DOI: https://doi.org/10.3390/molecules22050782

(90). K. Wang, H. Yao, Y. Meng, Y. Wang, X. Yan, R. Huang, Acta Biomater. 16 (2015) 196–205. Crossref DOI: https://doi.org/10.1016/j.actbio.2015.01.002

(91). W. Ngamcherdtrakul, J. Morry, S. Gu, D.J. Castro, S.M. Goodyear, T. Sangvanich, M.M. Reda, R. Lee, S.A. Mihelic, B.L. Beckman, Z. Hu, J.W. Gray, W. Yantasee, Adv. Funct. Mater. 25 (2015) 2646–2659. Crossref DOI: https://doi.org/10.1002/adfm.201404629

(92). Y. Chen, X. Wang, T. Liu, D.S. Zhang, Y. Wang, H. Gu, W. Di, Int. J. Nanomedicine 10 (2015) 2579–1594. Crossref DOI: https://doi.org/10.2147/IJN.S78774

Downloads

Published

07-09-2018

How to Cite

Levina, A. S., Repkova, M. N., Ismagilov, Z. R., & Zarytova, V. F. (2018). Methods of the Synthesis of Silicon-Containing Nanoparticles Intended for Nucleic Acid Delivery. Eurasian Chemico-Technological Journal, 20(3), 177–194. https://doi.org/10.18321/ectj720

Issue

Section

Article

Most read articles by the same author(s)

<< < 1 2 3 4 > >>