Changing the Structure of Resin-Asphaltenes Molecules in Cracking

  • Ye. Imanbayev Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty; Institute of Combustion Problems, 172 Bogenbay batyra st., Almaty Kazakhstan
  • Ye. Tileuberdi Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty; Institute of Combustion Problems, 172 Bogenbay batyra st., Almaty Kazakhstan http://orcid.org/0000-0001-9733-5015
  • Ye. Ongarbayev al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan http://orcid.org/0000-0002-0418-9360
  • Z. Mansurov Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty; Institute of Combustion Problems, 172 Bogenbay batyra st., Almaty Kazakhstan http://orcid.org/0000-0002-8956-216X
  • A. Batyrbayev Institute of Combustion Problems, 172 Bogenbay batyra st., Almaty Kazakhstan
  • Ye. Akkazin Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty Kazakhstan
  • E. Krivtsov Institute of Petroleum Chemistry, 4, Akademichesky ave., 634021, Tomsk Russian Federation
  • A. Golovko Institute of Petroleum Chemistry, 4, Akademichesky ave., 634021, Tomsk Russian Federation
  • S. Rudyk Sultan Qaboos University, Al Khoudh, Muscat 123 Oman http://orcid.org/0000-0002-6312-9771

Abstract

In the paper, structural changing of resin-asphaltene molecules in cracking process of oil sand bitumen are investigated. Cracking process to natural bitumen carried out in an open-to-air reactor, which extracted from oil sand by organic solvent. Reaction temperature was 450 °С and process duration was 60 min. The reactor was heated at a rate of 10 °C/min up to the desired temperature. Di-tert-butyl peroxide was used as radical formation additive. When limiting oxygen, it can be used catalyst molecule supplies as the oxidizer. The thermal destruction processes of heavy hydrocarbons with the catalyst make it possible to increase the yield of low boiling liquid products with the formation of coke and gas as by-products. High temperature leads to increase the oil content, and decrease the total resinasphaltene components in bitumen. Monte Carlo method used for construction the molecular structure of resin-asphaltene components. The calculations data determined the most stable conformation of resins and asphaltenes molecules, that the stability of the molecules affect structural characteristics such as the number of structural blocks, their size and spatial arrangement of atoms with respect to each other. Microscopic images showed that the asphaltenes have around 40‒50 nm of particle size, which large monolithic switching, weakly focused on a major surface, provided with amorphous carbon.

References

[1]. J. Hao, Y. Che, Y. Tian, D. Li, J. Zhang, Y. Qiao, Energy Fuels 31 (2017) 1295‒1309. Crossref

[2]. A.S.M. Junaid, H. Yin, A. Koenig, P. Swenson, J. Chowdhury, G. Burland, W.C. McCaffrey, S.M. Kuznicki, Appl. Catal., A 354 (2009) 44‒49. Crossref

[3]. Y.K. Ongarbayev, A.K. Golovko, E.B. Krivtsov, Y.I. Imanbayev, E. Tileuberdi, B. Tuleutaev, Z.A. Mansurov. Solid Fuel Chemistry 50 (2) (2016) 81‒87. Crossref

[4]. L.Ya. Kizil’shtein, I.V. Dubov, A.L. Shpitsgluz, and S.G. Parada, Komponenty zol i shlakov TЕS [Components of ashes and slags of thermal power plants] – Moscow: Energoatomizdat, 1995. – 176 р. (in Russian).

[5]. E.K. Ongarbaev, E.O. Doszhanov, Z.A. Mansurov. Pererabotka tjazhelyh neftej, neftjanyh ostatkov i othodov [Processing of heavy oils, oil residues and waste.] – Almaty: al-Farabi Kazakh National University, 2011. – 256 p. (in Russian).

[6]. N. Sebbar, P. Habisreuther, H. Bockhorn, I. Auzmendi-Murua, J. W. Bozzelli, Energy Fuels 31 (3) (2017) 2260. Crossref

[7]. Andrew E. Pomerantz, Matthew R. Hammond, Amy L. Morrow, Oliver C. Mullins and Richard N. Zare, Energy Fuels 23 (2009) 1162‒1168. Crossref

[8]. Eric Y. Sheu, Energy Fuels 16 (2002) 74‒82. Crossref

[9]. Banerjee, Dwijen K. Oil sands, heavy oil and bitumen. – Tulsa, USA: RenWell, 2012. –185 p.

[10]. F.R. Sultanov, Ye. Tileuberdi, Ye.K. Ongarbayev, Z.A. Mansurov, K.A. Khaseinov, B.K. Tuleutaev, and F. Behrendt, Euras. Chem. Tech. J. 15 (1) (2013) 77‒81. Crossref

[11]. A.G. Anshic, E.V. Kondratenko, E.V. Fomenko, N.N. Anshic, O.M. Sharonova, V.A. Nizov, A.M. Kovalev, O.A. Bajukov, A.N. Salanov. Isolation of permanent magnetic microspheres from energy sols and study of their physicochemical properties. Khimija v interesah ustojchivogo razvitija [Chemistry for sustainable development] 2 (1999) 105‒118 (in Russian).

[12]. Slamet Priyanto, G. Ali Mansoori, Aryadi Suwono, Chem. Eng. Sci. 56 (2001) 6933‒6939. Crossref

[13]. Ju.M. Ganeeva, T.N. Jusupova, G.V. Romanov. Asphaltene nano-aggregates: structure, phase transitions and effect on petroleum systems, Uspekhi Khimii (Russian Chemical Reviews) 80 (10) (2011) 1034‒1050. Crossref

[14]. Murray R. Gray. Upgrading oil sands bitumen and heavy oil. – Edmonton: The University of Alberta Press, 2015. – 514 p.

[15]. G.A. Camacho-Bragado, P. Santiago, M. Marin-Almazo, M. Espinosa, E.T. Romero, Juan Murgich, V. Rodriguez Lugo, M. Lozada-Cassou, M. Jose-Yacaman, Carbon 40 (2002) 2761‒2766. Crossref

[16]. K. Akbarzadeh, A. Hammami, A. Kharrat D. Zhang, S. Allenson, J. Creek, Sh. Kabir, A. (Jamal) Jamaluddin, A.G. Marshall, R.P. Rodgers, O.C. Mullins, T. Solbakken, Oilfield Review 19 (2) (2007) 22‒43.
Published
2017-06-30
How to Cite
[1]
Y. Imanbayev, “Changing the Structure of Resin-Asphaltenes Molecules in Cracking”, Eurasian Chem. Tech. J., vol. 19, no. 2, pp. 147-154, Jun. 2017.
Section
Articles