Bio-composite Material on the Basis of Carbonized Rice Husk in Biomedicine and Environmental Applications
DOI:
https://doi.org/10.18321/ectj105Abstract
The future prospects for biomedical and environmental engineering applications of heterogeneous materials on the basis of nano-structured carbonized rice husk are studied. The use of the nano-structured carbonized sorbents as delivery vehicles for the oral administration of probiotic microorganisms has a very big potential for improving functionality, safety and stability of probiotic preparations. The other possible mechanism of nano-structured carbonized sorbents is wound healing activity; the results demonstrated that the use of this material may offer multiple specific advantages in topical wound management. For bioremediation purposes nano-structured carbonized sorbents can be applied as bio-composite sorbent with immobilized microbial consortium consisting of bacterial strains with high oil-oxidizing activity.
References
2. John, D.E. and J.B. Rose, Review of factors affecting microbial survival in groundwater. Environ Sci Technol, 2005. 39(19): p. 7345-56.
3. Costerton, J.W., et al., Microbial biofilms. Annu Rev Microbiol, 1995. 49: p. 711-45.
4. Stoodley, P., et al., Biofilms as complex differentiated communities. Annu Rev Microbiol, 2002. 56: p. 187-209.
5. Kannan, A.M., et al., Bio-batteries and biofuel cells: leveraging on electronic charge transfer proteins. J Nanosci Nanotechnol, 2009. 9(3): p. 1665-78.
6. Shibasaki, S., H. Maeda, and M. Ueda, Molecular display technology using yeast-arming technology. Anal Sci, 2009. 25(1): p. 41-9.
7. Willner, I., B. Willner, and E. Katz, Biomolecule-nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry, 2007. 70(1): p. 2-11.
8. Gupta, R. and H. Mohapatra, Microbial biomass: an economical alternative for removal of heavy metals from waste water. Indian J Exp Biol, 2003. 41(9): p. 945-66.
9. Kamaludeen, S.P., et al., Bioremediation of chromium contaminated environments. Indian J Exp Biol, 2003. 41(9): p. 972-85.
10. Hunt, P.G., et al., Denitrification of agricultural drainage line water via immobilized denitrification sludge. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2008. 43(9): p. 1077-84.
11. Akin, C., Biocatalysis with immobilized cells. Biotechnol Genet Eng Rev, 1987. 5: p. 319-67.
12. Digel, I., Effect of transition metal ions and water soluble polymers on microbial cells adhesion to solid surfaces, in Biology Faculty. 1998, Kazakh National University: Almaty.
13. Klein, J. and H. Ziehr, Immobilization of microbial cells by adsorption. J Biotechnol, 1990. 16(1-2): p. 1-15.
14. Digel, I., Controlling microbial adhesion: a surface engineering approach, in Bioengineering in Cell and Tissue Research, S.C. G.M. Artmann, Editor. 2008, Springer: Berlin. p. 601-625.
15. Paca, J., et al., Factors influencing the aerobic biodegradation of 2,4-dinitrotoluene in continuous packed bed reactors. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2011. 46(12): p. 1328-37.
16. Park, C.H., M.R. Okos, and P.C. Wankat, Characterization of an immobilized cell, trickle bed reactor during long term butanol (ABE) fermentation. Biotechnol Bioeng, 1990.36(2): p. 207-17.
17. Cassidy, M.B., H. Lee, and J.T. Trevors, Environmental applications of immobilized microbial cells: A review. Journal of Industrial Microbiology & Biotechnology, 1996. 16(2): p. 79-101.
18. Chibata, I., Application of immobilized enzymes and immobilized microbial cells for productions of L-amino acids and organic acids. Hindustan Antibiot Bull, 1978. 20(3-4): p. 58-67.
19. Smíšek, M. and S. *Cerný, Active carbon: manufacture, properties and applications. Topics in inorganic and general chemistry,. 1970, Amsterdam, New York,: Elsevier Pub. Co. xii, 479 p.
20. Jankowska, H., et al., Active carbon. Ellis Horwood series in physical chemistry. 1991, New York: E. Horwood. 280 p.
21. Burchell, T.D., Carbon materials for advancedtechnologies. 1999, Amsterdam; New York:Pergamon. xvii, 540 p.
22. Gorchakov, V.D., et al., [Immunosorption on active carbon]. Vopr Med Khim, 1981. 27(4): p. 544-7.
23. Scott, L.T. and M.A. Petrukhina, Fragments of fullerenes and carbon nanotubes : designed synthesis, unusual reactions, and coordination chemistry. 2011, Hoboken, N.J.: Wiley. xviii, 413 p.
24. Jorio, A., G. Dresselhaus, and M.S. Dresselhaus, Carbon nanotubes: advanced topics in the synthesis, structure, properties, and applications. Topics in applied physics,. 2008, Berlin ; New York: Springer. xxiv, 720 p.
25. Blank, V. and B. Kulnitskiy, Carbon nanotubes and related structures 2008. 2008, Kerala, India: Research Signpost. 197 p.
26. Banerjee, S., S. Naha, and I.K. Puri, Molecular simulation of the carbon nanotube growth mode during catalytic synthesis. Applied Physics Letters, 2008. 92(23): p. 233121.
27. Zheng, J., et al., Plasma-assisted approaches in inorganic nanostructure fabrication. Adv Mater, 2010. 22(13): p. 1451-73.
28. Son, H.J., Y.H. Park, and J.H. Lee, Development of supporting materials for microbial immobilization and iron oxidation. Appl Biochem Biotechnol, 2004. 112(1): p. 1-12.
29. Mansurov, Z.A. and M.K. Gilmanov, Nanostructural Carbon Sorbents for Different Functional Application, in Sorbents: Properties, Materials and Applications, T.P. Willis, Editor. 2009, Nova Science.
30. Kerimkulova, A.R., et al., Nanoporous carbon sorbent for Molecular – sieve Chromatography of Lipoprotein Complex. Russian J. of Physical Chemistry A, 2012. 86(6): p. 1004-1007.
31. Beg, S., et al., Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol, 2011. 63(2): p. 141-63.
32. Grigor'ev, A.V., et al., [The adhesion of pathogenic microflora on carbon sorbents]. Zh Mikrobiol Epidemiol Immunobiol, 1991(7): p. 11-4.
33. Feng, W. and P. Ji, Enzymes immobilized on carbon nanotubes. Biotechnol Adv, 2011. 29(6): p.889-95.
34. Lenihan, J.S., et al., Protein immobilization on carbon nanotubes through a molecular adapter. J Nanosci Nanotechnol, 2004. 4(6): p.600-4.
35. Mansurov, Z.A., Some Applications of Nanocarbon Materials for Novel Devices Nanoscale Devices - Fundamentals and Applications, R. Gross, A. Sidorenko, and L. Tagirov, Editors. 2006, Springer Netherlands. p. 355-368.
36. Mansurov, Z., Flame synthesis of carbon nanomaterials: An overview. International Journal of Self-Propagating High-Temperature Synthesis, 2011. 20(4): p. 266-268.
37. Korber, D.R., et al., Reporter systems for microscopic analysis of microbial biofilms. Methods Enzymol, 1999. 310: p. 3-20.
38. Verran, J. and K. Whitehead, Factors affecting microbial adhesion to stainless steel and other materials used in medical devices. Int J Artif Organs, 2005. 28(11): p. 1138-45.
39. Geoghegan, M., et al., The polymer physics and chemistry of microbial cell attachment and adhesion. Faraday Discuss, 2008. 139: p. 85- 103; discussion 105-28, 419-20.
40. Junter, G.A. and T. Jouenne, Immobilized viable microbial cells: from the process to the proteome em leader or the cart before the horse. Biotechnol Adv, 2004. 22(8): p. 633-58.
41. Korber, D.R., J.R. Lawrence, and D.E. Caldwell, Effect of Motility on Surface Colonization and Reproductive Success of Pseudomonas fluorescens in Dual-Dilution Continuous Culture and Batch Culture Systems. Appl Environ Microbiol, 1994. 60(5): p. 1421-9.
42. Vigeant, M.A. and R.M. Ford, Interactions between motile Escherichia coli and glass in media with various ionic strengths, as observed with a three-dimensional-tracking microscope. Appl Environ Microbiol, 1997.63(9): p. 3474-9.
43. Lilly, D.M. and R.H. Stillwell, Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science, 1965. 147(3659): p. 747-8.
44. Fuller, R., Probiotics: prospects of use in opportunistic infections. 1995, Herborn-Dill: Institute for Microbiology and Biochemistry.
45. Guarner, F., et al., Should yoghurt cultures be considered probiotic? Br J Nutr, 2005. 93(6):
p. 783-6.
46. Montalto, M., et al., Probiotic treatment increases salivary counts of lactobacilli: a double-blind, randomized, controlled study. Digestion, 2004. 69(1): p. 53-6.
47. Caglar, E., et al., Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55730 by straws or tablets. Acta Odontol Scand, 2006. 64(5): p.314-8.
48. Sadykov, R., et al., Oral lead exposure induces dysbacteriosis in rats. J Occup Health, 2009. 51(1): p. 64-73.
49. Gershwin, M.E. and A. Belay, Spirulina in human nutrition and health. 2008, Boca Raton: CRC Press. xiii, 312 p.
50. Deng, R. and T.J. Chow, Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc Ther, 2010. 28(4): p. e33-45.
51. Vonshak, A., Spirulina platensis (arthrospira): physiology, cell-biology and biotechnology. 1997, London: Taylor & Francis.
52. Elliott, C., The effects of silver dressings on chronic and burns wound healing. Br J Nurs, 2010. 19(15): p. S32-6.
53. Kuliev, R.A. and R.F. Babaev, [Physical factors in the comprehensive therapy of purulent wounds in diabetes mellitus]. Probl Endokrinol (Mosk), 1991. 37(5): p. 24-6.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.