Synthesis of Superhydrophobic Carbon Surface during Combustion Propane
DOI:
https://doi.org/10.18321/ectj94Abstract
We synthesize and deposit carbon nanostructures through flame synthesis on silicon and nickel wafers at different nonpremixed flame locations to produce hydrophobic surfaces. The hydrophobicity is characterized through the contact angle for water droplets placed on the surface. The surface morphology of the nanoparticles is obtained from SEM images. The morphology and hydrohobicity of the nanostructured surfaces depends upon the deposition, which differs at various flame locations. We determine the optimum flame location for the synthesis and deposition of surface carbon nanostructures that lead to maximum hydrophobicity.
References
2. S. Sen, I.K. Puri Flame synthesis of carbon nanofibers and nanofiber composites containing encapsulated metal particles. Nanotechnology 2004; 15 (3): 264 - 8.
3. S. Naha., S. Sen, I.K. Puri. Flame synthesis of superhydrophobic amorphous carbon surfaces, Carbon V. 45, Issue 8, (2007), P. 1702-1706.
4. S. Mazumder., S. Ghosh., I. Puri. Nonpremixed flame synthesis of hydrophobic carbon nanostructured surfaces, 33 th. Symp. (Intern.) on Combustion. Pittsburgh: The Combustion Inst., (2010).
5. J. Robertson Diamond-like amorphous carbon. Mater Sci Eng R 2002; 37 (4 - 6): 129 - 281.
6. A. Levesque, V.T. Binh, V. Semet, D. Guillot, R.Y. Fillit, M.D. Brookes, et al. Mono disperse carbon nanopearls in a foam-like arrangement: a new carbon nano-compound for cold cathodes. Thin Solid Films 2004; 464-465: 308 - 14.
7. Z.A. Mansurov, M. Nazhipkyzy, B.T. Lesbaev, I.K. Puri. Synthesis of superhydrophobic carbon surface during combustion propane. Oil and Gas, (2010); 5; p. 27-33 (In Russian).
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.