Application of POSS Nanotechnology for Preparation of Efficient Ni Catalysts for Hydrogen Production

  • I. Z. Ismagilov Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russia
  • E. V. Matus Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russia
  • V. V. Kuznetsov Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russia
  • S. A. Yashnik Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russia
  • M. A. Kerzhentsev Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russia
  • G. Gerritsen Hybrid Catalysis B.V., Den Dolech 2, Eindhoven 5612, AZ, the Netherlands
  • H. C.L. Abbenhuis Hybrid Catalysis B.V., Den Dolech 2, Eindhoven 5612, AZ, the Netherlands
  • Z. R. Ismagilov Boreskov Institute of Catalysis SB RAS, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russia; Institute of Coal Chemistry and Material Science SB RAS, pr. Sovetskiy, 18, 650000, Kemerovo, Russia
Keywords: POSS nanotechnology, nanomaterials, Ni nanoparticles, autothermal reforming of methane, hydrogen production

Abstract

POSS (polyhedral oligomeric silsesquioxanes) nanotechnology was applied for preparation of efficient Ni catalysts for hydrogen production through autothermal reforming of methane (ATR of CH4). The novel metal-POSS precursor [Nickel (II) ‒ Heptaisobutyl POSS (C4H9)7Si7O9(OH)O2Ni] of Ni nanoparticles was introduced into Ce0.5Zr0.5O2 support with following calcination and reduction stages of activation. The peculiarity of the genesis of Ni/SiO2/Ce0.5Zr0.5O2 nanomaterials and their characteristics versus deposition mode were studied by X-ray fluorescence spectroscopy, thermal analysis, N2 adsorption, X-ray diffraction, high-resolution transmission electron microscopy and H2 temperature-programmed reduction. The two kinds of supported Ni-containing particles were observed: highly dispersed Ni forms (1‒2 nm) and large Ni-containing particles (up to 50‒100 nm in size). It was demonstrated that the textural, structural, red-ox and, consequently, catalytic properties of ex-Ni-POSS catalysts depend on the deposition mode. The increase of a portion of difficultly reduced Ni2+ species is found upon application of intermediate calcination during Ni-POSS deposition that has detrimental effect on the activity of catalyst in ATR of CH4. The Ni/SiO2/Ce0.5Zr0.5O2 catalyst prepared by one-step Ni-POSS deposition exhibits the highest H2 yield ‒ 80% at T = 800 °C.

 

References

(1). N.Z. Muradov, T.N. Veziroglu, Int. J. Hydrogen Energy 33 (2008) 6804‒6839. Crossref

(2). J. Nowotny, N.T. Veziroglu, Int. J. Hydrogen Energy 36 (2011) 13218‒13224. Crossref

(3). C.C. Cormos, L. Petrescu, A.M. Cormos, Proceedings 24 European Symposium Computer Aided Process Engineering, Budapest, Hungary (2014) 1082‒1086.

(4). Dincer, C. Acar, Int. J. Hydrogen Energy 40 (2015) 11094‒11111. Crossref

(5). J.D. Holladay, J. Hu, D.L. King, Y. Wang, Catal. Today 139 (2009) 244–260. Crossref

(6). N.Z. Muradov, T.N. Veziroglu, Int. J. Hydrogen Energy 30 (2005) 225‒237. Crossref

(7). Dincer, Int. J. Hydrogen Energy 37 (2012) 1954‒1971. Crossref

(8). L. García, Compendium of Hydrogen Energy 83 (2015) 83‒107. Crossref

(9). Y. Kalinci, A. Hepbasli, I. Dincer, Int. J. Hydrogen Energy 34 (2009) 8799‒8817. Crossref

(10). L. Protasova, F. Snijkers, Fuel 181 (2016) 75‒93. Crossref

(11). J.O’M. Bockris, Int. J. Hydrogen Energy 38 (2013) 2579‒2588. Crossref

(12). M. Ball, M. Wietschel, Int. J. Hydrogen Energy 34 (2009) 615‒627. Crossref

(13). M. Balat, Int. J. Hydrogen Energy 33 (2008) 4013‒4029. Crossref

(14). J.D. Holladay, Y. Wang, J. Power Sources 282 (2015) 602‒621. Crossref

(15). Report of the Hydrogen Production Expert Panel: A Subcommittee of the Hydrogen & Fuel Cell Technical Advisory Committee, United States Department of Energy Washington, DC 20585 May 2013.

(16). R. Horn, R. Schlogl, Catal. Lett. 145 (2015) 23– 39. Crossref

(17). K. Aasberg-Petersen, I. Dybkjær, C.V. Ovesen, N.C. Schjødt, J. Sehested, S.G. Thomsen, J. Nat. Gas Sci. Eng. 3 (2011) 423‒459. Crossref

(18). S.D. Angeli, G. Monteleone, A. Giaconia, A.A. Lemonidou, Int. J. Hydrogen Energy 39 (2014) 1979‒1997. Crossref

(19). T.L. LeValley, A.R. Richard, M. Fan, Int. J. Hydrogen Energy 39 (2014) 16983‒17000. Crossref

(20). U. Izquierdo, V.L. Barrio, J.F. Cambra, J. Requies, M.B. Guemez, P.L. Arias, G. Kolb, R. Zapf, A.M. Gutierrez, J.R. Arraibi, Int. J. Hydrogen Energy 37 (2012) 7026‒7033. Crossref

(21). V.D. Santoa, A. Gallo, A. Naldoni, M. Guidotti, R. Psaro, Catal. Today 197 (2012) 190‒205. Crossref

(22). S. Damyanova, B. Pawelec, K. Arishtirova, J.L.G. Fierro, Int. J. Hydrogen Energy 37 (2012) 15966‒15975. Crossref

(23). D.A.J.M. Ligthart, J.A.Z. Pieterse, E.J.M. Hensen, Appl. Catal. A 405 (2011) 108‒119. Crossref

(24). G. Nahar, V. Dupont, Rec. Patents Chem. Eng. 6 (2013). 8‒42. Crossref

(25). C.H. Bartholomew, Appl. Catal. A 2012 (2001) 17‒60. Crossref

(26). J.A. Moulijn, A.E. Diepen, F. Kapteijn, Appl. Catal. A 212 (2001) 3‒16. Crossref

(27). K.O. Christensen, D. Chen, R. Lødeng, A. Holmen, Appl. Catal. A 314 (2006) 9‒22. Crossref

(28). J. Zhu, X. Peng, L. Yao, J. Shen, D. Tong, C. Hu, Int. J. Hydrogen Energy 36 (2011) 7094‒7104. Crossref

(29). I.Z. Ismagilov, E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 394‒402. Crossref

(30). S. Li, J. Gong, Chem. Soc. Rev. 43 (2014) 7245‒7256. Crossref

(31). K. Fang, J. Ren, Y. Sun, J. Mol. Catal. A 229 (2005) 51–58. Crossref

(32). S. He, H. Wu, W. Yu, L. Mo, H. Lou, H. Zheng, Int. J. Hydrogen Energy 34 (2008) 839‒843. Crossref

(33). S. He, X. Zheng, L. Mo, W. Yu, H. Wanga, Y. Luo, Mater. Res. Bull. 49 (2014) 108–113. Crossref

(34). D. Baudouin, U. Rodemerck, F. Krumeich, A. Mallmann, R.C. Szeto, H. Ménard, L. Veyre, J.- P. Candy, P.B. Webb, C. Thieuleux, C. Copéret, J. Catal. 297 (2013) 27‒34. Crossref

(35). J. Juan-Juan, M.C. Roman-Martınez, M.J. Illan- Gomez, Appl. Catal. A 355 (2009) 27–32. Crossref

(36). J.M. García-Vargas, J.L. Valverde, A. Lucas Consuegra, B. Gómez-Monedero, P. Sánchez, F. Dorado, Appl. Catal. A 431-432 (2012) 49‒56. Crossref

(37). D. Liu, Y. Wang, D. Shi, X. Jia, X. Wang, A. Borgna, R. Lau, Y. Yang, Int. J. Hydrogen Energy 37 (2012) 10135‒10144. Crossref

(38). S. Somacescu, M. Florea, P. Osiceanu, J.M. Cal¬deron-Moreno, C. Ghica, J.M. Serra, J. Nanopart. Res. 17 (2015) 426. Crossref

(39). Z. Hou, O. Yokota, T. Tanaka, T. Yashima, Appl. Surf. Sci. 233 (2004) 58‒68. Crossref

(40). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, S.A. Yashnik, I.P. Prosvirin, N. Mota, R.M. Navarro, J.L.G. Fierro, Z.R. Ismagilov, Int. J. Hydrogen Energy 39 (2014) 20992‒21006. Crossref

(41). Y. Wang, L. Wang, N. Gan, Z.Y. Lim, C. Wu, J. Peng, W.G. Wang, Int. J. Hydrogen Energy 39 (2014) 10971‒10979.

(42). A.J. Abreu, A.F. Lucrédio, E.M. Assaf, Fuel. Process. Technol. 102 (2012) 140‒145. Crossref

(43). D. Li, Y. Nakagawa, K. Tomishige, Appl. Catal. A 408 (2011) 1‒24. Crossref

(44). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Catal. Today 210 (2013) 10‒18. Crossref

(45). S. Gopalakrishnana, M.G. Faga, I. Miletto, S. Coluccia, G. Caputo, S. Sau, A. Giaconia, G. Berlier, Appl. Catal. B 138-139 (2013) 353‒361. Crossref

(46). A.J. Majewski, J. Wood, W. Bujalski, Int. J. Hydrogen Energy 38 (2013) 14531‒14541. Crossref

(47). V.M. Gonzalez-Delacruz, J.P. Holgado, R. Pereñíguez, A. Caballero, J. Catal. 257 (2008) 307‒314. Crossref

(48). V.M. Gonzalez-Delacruz, F. Ternero, R. Pere-ñíguez, A. Caballero, J.P. Holgado, Appl. Catal. A 384 (2010) 1‒9. Crossref

(49). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Appl. Catal. A 481 (2014) 104‒115. Crossref

(50). M.A. Naeem, A.S. Al-Fatesh, A.H. Fakeeha, A.E. Abasaeed, Int. J. Hydrogen Energy 39 (2014) 17009‒17023. Crossref

(51). L. Zhang, X. Wang, B. Tan, U.S. Ozkan, J. Mol. Catal. A 297 (2009) 26‒34. Crossref

(52). H. Li, H. Xu, J. Wang, J. Natural. Gas Chem. 20 (2011) 1‒8. Crossref

(53). K. Urasaki, Y. Tanpo, Y. Nagashima, R. Kikuchi, S. Satokawa, Appl. Catal. A 452 (2013) 174‒178. Crossref

(54). W. Yang, D. He, Appl. Catal. A 524 (2016) 94‒104. Crossref

(55). F. Liu, L. Zhao, H. Wang, X. Bai, Y. Liu, Int. J. Hydrogen Energy 39 (2014) 10454‒10466. Crossref

(56). F. Bentaleb, M. Che, A.-C. Dubreuil, C. Thomazeau, E. Marceau, Catal. Today 235 (2014) 250‒255. Crossref

(57). R. Murugavel, P. Davis, V. Shete, Inorg. Chem. 42 (2003) 4696‒4706. Crossref

(58). K. Wada, T. Mitsudo, Catal. Surv. Asia 9 (2005) 229‒241. Crossref

(59). A.J. Ward, A.F. Masters, T. Maschmeyer, Chapter 3 Metallasilsesquioxanes: Molecular Analogues of Heterogeneous Catalysts, 2011. P. 135‒166, In: C. Hartmann-Thompson (ed.), Applications of Polyhedral Oligomeric Silsesquioxanes, Advances in Silicon Science 3, Springer Science + Business Media B.V. Crossref

(60). N. Maxim, H.C.L. Abbenhuis, P.J. Stobbelaar, B.L. Mojet, R.A. van Santen, Phys. Chem. Chem. Phys. 1 (1999) 4473‒4477. Crossref

(61). N. Maxim, P.M.C. Magusin, P.J. Kooyman, J.H.M.C. van Wolput, R.A. van Santen, H.C.L. Abbenhuis, Chem. Mater. 13 (2001) 2958‒2964. Crossref

(62). N. Maxim, Metal silesquioxanes as precursors to microporous metallosilicates. PhD Thesis, Eindhoven: Technische Universiteit Eindhoven, 2002. ISBN 90-386-2683-5

(63). H. Kaneko, S. Taku, Y. Tamaura, Solar Energy 85 (2011) 2321–2330. Crossref

(64). A. Fina, D. Tabuani, F. Carniato, A. Frache, E. Boccaleri, G. Camino, Thermochim. Acta 440 (2006) 36‒42. Crossref

(65). M.F.P. Silva, J.R. Matos, P.C. Isolani, J. Therm. Anal. Calorim. 94 (2008) 305‒311. Crossref

(66). A. Małecki, R. Gajerski, S. Łabuś, B. Prochowska-Klisch, K.T. Wojciechowski, J. Therm. Anal. Calorim. 60 (2000) 17‒23. Crossref

(67). E. Mikuli, A. Migdał-Mikuli, R. Chyży, B. Grad, R. Dziembaj, Thermochim. Acta 370 (2001) 65‒71. Crossref

(68). B. Jankovic, S. Mentus, D. Jelić, Physica B 404 (2010) 2263‒2269. Crossref

(69). F. Pompeo, N.N. Nichio, M.G. Gonzalez, M. Montes, Catal. Today 107-108 (2005) 856–862. Crossref

(70). G.P. Androutsopoulos, C.E. Salmas, Ind. Eng. Chem. Res. 39 (2000) 3747‒3763. Crossref

(71). T.D. Nguyen-Phan, M.B. Song, E.J. Kim, E.W. Shin, Micropor. Mesopor. Mater. 119 (2009) 290‒298. Crossref

(72). J. Gao, J. Guo, D. Liang, Z. Hou, J. Fei, X. Zheng, Int. J. Hydrogen Energy 33 (2008) 5493‒5500. Crossref

(73). X. Chen, A.R. Tadd, J.W. Schwank, J. Catal. 251 (2007) 374‒387. Crossref

(74). B. Li, X. Xu, S. Zhang, Int. J. Hydrogen Energy 38 (2013) 890‒900. Crossref

(75). R.V. Wandekar, M. Ali (Basu), B.N. Wani, S.R. Bharadwaj, Mater. Chem. Phys. 99 (2006) 289‒294. Crossref

(76). B. Scheffer, P. Molhoek, J.A. Moulijn, Appl. Catal. 46 (1989) 11‒30. Crossref

(77). H. Mori, C. Wen, J. Otomo, K. Eguchi, H. Takahashi, Appl. Catal. A 245 (2003) 79‒85. Crossref

(78). J.S. Lisboa, L.E. Terra, P.R.J. Silva, H. Saitovitch, F.B. Passos, Fuel Process. Technol. 92 (2011) 2075‒2082. Crossref

(79). S. Pengpanich, V. Meeyoo, T. Rirksomboon, Catal. Today 93-95 (2004) 95‒105. Crossref

(80). J.A. Montoya, E. Romero-Pascual, C. Gimon, P. Del Angel, A. Monzón, Catal. Today 63 (2000) 71‒85. Crossref

(81). T. Takeguchi, S.N. Furukawa, M. Inoue, J. Catal. 202 (2001) 14‒24. Crossref

(82). J.C. Escritori, S.C. Dantas, R.R. Soares, C.E. Hori, Catal. Commun. 10 (2009) 1090‒1094. Crossref

(83). T. Takeguchi, S.N. Furukawa, M. Inoue, K. Eguchi, Appl. Catal. A 240 (2003) 223‒233. Crossref

(84). Q. Jing, L. Fang, H. Lou, X. Zheng, J. Rare Earths 27 (2009) 431‒436. Crossref

Published
2017-01-25
How to Cite
[1]
I. Ismagilov, “Application of POSS Nanotechnology for Preparation of Efficient Ni Catalysts for Hydrogen Production”, Eurasian Chem. Tech. J., vol. 19, no. 1, pp. 3-16, Jan. 2017.
Section
Articles

Most read articles by the same author(s)