Methods of the Synthesis of Silicon-Containing Nanoparticles Intended for Nucleic Acid Delivery

  • A. S. Levina Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia; Institute of Chemical Biology and Fundamental Medicine, SB RAS, pr. Ak. Lavrent’eva 8, Novosibirsk 630090, Russia
  • M. N. Repkova Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia; Institute of Chemical Biology and Fundamental Medicine, SB RAS, pr. Ak. Lavrent’eva 8, Novosibirsk 630090, Russia
  • Z. R. Ismagilov Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia; Boreskov Institute of Catalysis, SB RAS, pr. Ak. Lavrent’eva 5, Novosibirsk 630090, Russia
  • V. F. Zarytova Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia; Institute of Chemical Biology and Fundamental Medicine, SB RAS, pr. Ak. Lavrent’eva 8, Novosibirsk 630090, Russia
Keywords: synthesis, silicon-containing nanoparticles, nucleic acids, delivery in cells

Abstract

A promising new approach to the treatment of viral infections and genetic diseases associated with damaged or foreign nucleic acids in the body is gene therapy, i.e., the use of antisense oligonucleotides, ribozymes, deoxyribozymes, siRNA, plasmid DNA, etc. (therapeutic nucleic acids). Selective recognition of target nucleic acids by these compounds based on highly specific complementary interaction can minimize negative side effects, which occur with currently used low molecular weight drugs. To apply a new generation of therapeutic agents in medical practice, it is necessary to solve the problem of their delivery into cells. Silicon-containing nanoparticles are considered as promising carriers for this purpose due to their biocompatibility, low toxicity, ability to biodegradation and excretion from the body, as well as the simplicity of the synthesis and modification. Silicon-containing nanoparticles are divided into two broad categories: solid (nonporous) and mesoporous silicon nanoparticles (MSN). This review gives a brief overview of the creation of mesoporous, multilayer, and other silicon-based nanoparticles. The publications concerning solid silicon-organic nanoparticles capable of binding and delivering nucleic acids into cells are discussed in more detail with emphasis on methods for their synthesis. The review covers publications over the past 15 years, which describe the classical Stöber method, the microemulsion method, modification of commercial silica nanoparticles, and other strategies.

References

(1). P.Y. Teo, W. Cheng, J.L. Hedrick, Y.Y. Yang, Adv. Drug Deliv. Rev. 98 (2016) 41–63. Crossref

(2). A. Mescalchin, T. Restle, Molecules 16 (2011) 1271–1296. Crossref

(3). A.S. Wierzbicki, A. Viljoen, Expert Opin. Biol. Ther. 16 (2016) 1125–1134. Crossref

(4). G. McClorey, M.J. Wood, Curr. Opin. Pharmacol. 24 (2015) 52–58. Crossref

(5). R.L. Juliano, X. Ming, O. Nakagawa, Bioconjug. Chem. 23 (2012) 147–157. Crossref

(6). X. Ming, B. Laing, Adv. Drug. Deliv. Rev. 87 (2015) 8189. Crossref

(7). M. Jafari, M. Soltani, S. Naahidi, D.N. Karunaratne, P. Chen, Curr. Med. Chem. 19 (2012) 197208. Crossref

(8). M.B. de Jesus, I.S. Zuhorn, J. Control. Release 201 (2015) 1–13. Crossref

(9). T. Lehto, K. Ezzat, M.J. Wood, S. El Andaloussi, Adv. Drug Deliv. Rev. 106 (2016) 172–182. Crossref

(10). S. Parveen, R. Misra, S.K. Sahoo, Nanomedicine 8 (2012) 147–166. Crossref

(11). A. Samanta, I.L. Medintz, Nanoscale 8 (2016) 9037–9095. Crossref

(12). D. Gozuacik, H.F. Yagci-Acar, Y. Akkoc, A. Kosar, A.I. Dogan-Ekici, S. Ekici, J. Biomed. Nanotechnol. 10 (2014) 1751–1783. Crossref

(13). I. Roy, M.K. Stachowiak, E.J. Bergey, Nanomedicine 4 (2008) 89–97. Crossref

(14). Y. Liu, C. Lou, H. Yang, M. Shi, H. Miyoshi, Curr. Cancer Drug Targets 11 (2011) 156–163. Crossref

(15). V.V. Annenkov, E.N. Danilovtseva, V.A. Pal’shin, O.N. Verkhozina, S.N. Zelinskiya, U.M. Krishnanb, RSC Adv. 7 (2017) 20995– 21027. Crossref

(16). A. Liberman, N. Mendez, W.C. Trogler, A.C. Kummel, Surf. Sci. Rep. 69 (2014) 132–158. Crossref

(17). T.Y. Cheang, B. Tang, A.W. Xu, G.Q. Chang, Z.J. Hu, W.L. He, Z.H. Xing, J.B. Xu, M. Wang, S.M. Wang, Int. J. Nanomedicine 7 (2012) 1061–1067. Crossref

(18). S. Sripanyakorn, R. Jugdaohsingh, R.P.H. Thompson, J.J. Powell, Nutrition Bull. 30 (2005) 222–230. Crossref

(19). J.H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Nat. Mater. 8 (2009) 331–336. Crossref

(20). Q. He, Z. Zhang, F. Gao, Y. Li, J. Shi, Small 7 (2011) 271–280. Crossref

(21). G. Xie, J. Sun, G. Zhong, L. Shi, D. Zhang, Arch. Toxicol. 84 (2010) 183–190. Crossref

(22). J.S. Souris, C-H. Lee, S-H. Cheng, C-T. Chen, C-S. Yang, J-A. Ho, C-Y. Mou, L-W. Lo, Biomaterials 31 (2010) 5564–5574. Crossref

(23). C. Guo, R.A. Gemeinhart, Mol. Pharm. 2 (2004) 309–316. Crossref

(24). Y. Piao, A. Burns, J. Kim, U. Wiesner, T. Hyeon, Adv. Funct. Mater. 18 (2008) 3745–3758. Crossref

(25). F. Tang, L. Li, D. Chen, Adv. Mater. 24 (2012) 1504–1534. Crossref

(26). M. Manzano, M. Colilla, M. Vallet-Regí, Expert. Opin. Drug Deliv. 6 (2009) 1383–1400. Crossref

(27). N.A. Keasberry, C.W. Yapp, A. Idris, Biochemistry (Mosc). 82 (2017) 655–662. Crossref

(28). N.Ž. Knežević, J.O. Durand, Nanoscale 7 (2015) 2199–2209. Crossref

(29). I.I. Slowing, B.G. Trewyn, S. Giri, V.S.-Y. Lin, Adv. Funct. Mater. 17 (2007) 1225–1236. Crossref

(30). L. Tang, J. Cheng, Nano Today 8 (2013) 290– 312. Crossref

(31). J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Beilstein J. Nanotechnol. 9 (2018) 1050–1074. Crossref

(32). W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26 (1968) 62–69. Crossref

(33). S.V. Lazareva, N.V. Shikina, L.E. Tatarova, Z.R. Ismagilov, Eurasian Chemico-Technological Journal 19 (2017) 295–302. Crossref

(34). K.D. Hartlen, A.P.T. Athanasopoulos, V. Kitaev, Langmuir 24 (2008) 1714–1720. Crossref

(35). M. Nakamura, K. Ishimura, Langmuir 24 (2008) 5099–5108. Crossref

(36). M. Nakamura, K. Ishimura, J. Phys. Chem. C 111 (2007) 18892–18898. Crossref

(37). M. Nakamura, K. Ishimura, Langmuir 24 (2008) 12228–12234. Crossref

(38). M. Nakamura, M. Shono, K. Ishimura, Anal. Chem. 79 (2007) 6507–6514. Crossref

(39). E.W. Choi, H.C. Koo, I.S. Shin, Y.J. Chae, J.H. Lee, S.M. Han, S.J. Lee, D.H. Bhang, Y.H. Park, C.W. Lee, H.Y. Youn, Exp. Hematol. 36 (2008) 1091–1097. Crossref

(40). E.W. Choi, I.S. Shin, Y.J. Chae, H.C. Koo, J.H. Lee, T.H. Chung, Y.H. Park, D.Y. Kim, C.Y. Hwang, C.W. Lee, H.Y. Youn, Exp. Hematol. 36 (2008) 807–815. Crossref

(41). A.S. Levina, M.N. Repkova, N.V. Shikina, Z.R. Ismagilov, S.A. Yashnik, D.V. Semenov, Yu.I. Savinovskaya, N.A. Mazurkova, I.A. Pyshnaya, V.F. Zarytova, Beilstein J. Nanotechnol. 9 (2018) 2516–2525. Crossref

(42). C. Tojo, M. de Dios, F. Barroso, Materials 4 (2011) 55–72. Crossref

(43). J. Peng, X. He, K. Wang, W. Tan, H. Li, X. Xing, Y. Wang, Nanomedicine 2 (2006) 113– 120. Crossref

(44). X.X. He, K. Wang, W. Tan, B. Liu, X. Lin, C. He, D. Li, S. Huang, J. Li, J. Am. Chem. Soc. 125 (2003) 7168–7169. Crossref

(45). P. Zhang, T.Y. Wang, H.M. Xiong, J.L. Kong, Talanta 127 (2014) 43–50. Crossref

(46). I. Roy, T.Y. Ohulchanskyy, D.J. Bharali, H.E. Pudavar, R.A. Mistretta, N. Kaur, P.N. Prasad, Proc. Natl. Acad. Sci. USA 102 (2005) 279–284. Crossref

(47). D.J. Bharali, I. Klejbor, E.K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E.J. Bergey, P.N. Prasad, M.K. Stachowiak, Proc. Natl. Acad. Sci. USA 102 (2005) 11539–11544. Crossref

(48). I. Klejbor, E.K. Stachowiak, D.J. Bharali, I. Roy, I. Spodnik, J. Morys, E.J. Bergey, P.N. Prasad, M.K. Stachowiak, J. Neurosci. Methods 165 (2007) 230–243. Crossref

(49). R. Kumar, I. Roy, T.Y. Ohulchanskyy, L.N. Goswami, A.C. Bonoiu, E.J. Bergey, K.M. Tramposch, A. Maitra, P.N. Prasad, ACS Nano 2 (2008) 449–456. Crossref

(50). R. Kumar, I. Roy, T.Y. Ohulchanskky, L.A. Vathy, E.J. Bergey, M. Sajjad, P.N. Prasad ACS Nano 4 (2010) 699–708. Crossref

(51). J. Liu, F. Erogbogbo, K.T. Yong, L. Ye, J. Liu, R. Hu, H. Chen, Y. Hu, Y. Yang, J. Yang, I. Roy, N.A. Karker, M.T. Swihart, P.N. Prasad, ACS Nano 7 (2013) 7303–7310. Crossref

(52). G. Chen, I. Roy, C. Yang, P.N. Prasad, Chem. Rev. 116 (2016) 2826–2885. Crossref

(53). T. Yokoi, Y. Sakamoto, O. Terasaki, Y. Kubota, T. Okubo, T. Tatsumi, J. Am. Chem. Soc. 128 (2006) 13664–13665. Crossref

(54). X. Li, Y. Chen, M. Wang, Y. Ma, W. Xia, H. Gu, Biomaterials 34 (2013) 391–401. Crossref

(55). Z. Li, S. Zhu, K. Gan, Q. Zhang, Z. Zeng, Y. Zhou, H. Liu, W. Xiong, X. Li, G. Li, J. Nanosci. Nanotechnol. 5 (2005) 1199–1203. Crossref

(56). S.G. Zhu, J.J. Xiang, X.L. Li, S.R. Shen, H.B. Lu, J. Zhou, W. Xiong, B.C. Zhang, X.M. Nie, M. Zhou, K. Tang, G.Y. Li, Biotechnol. Appl. Biochem. 39 (2004) 179–187. Crossref

(57). C. Kneuer, M. Sameti, E.G. Haltner, T. Schiestel, H. Schirra, H. Schmidt, C.M. Lehr, Int. J. Pharm. 196 (2000) 257–261. Crossref

(58). M. Sameti, G. Bohr, M.N. Ravi Kumar, C. Kneuer, U. Bakowsky, M. Nacken, H. Schmidt, C.M. Lehr, Int. J. Pharm. 266 (2003) 51–60. Crossref

(59). J.A. Harding, C.M. Engbers, M.S. Newman, N.I. Goldstein, S. Zalipsky, Biochim. Biophys. Acta 1327 (1997) 181–192. Crossref

(60). M. Abdelmouleh, S. Boufi, A. Ben Salah, M. Naceur Belgacem, A. Gandini, Langmuir 18 (2002) 3203–3208. Crossref

(61). Z. Csogor, M. Nacken, M. Sameti, C.M. Lehr, H. Schmidt, Mat. Sci. Eng. C 23 (2003) 93–97. Crossref

(62). M.N. Repkova, A.S. Levina, E.I. Filippova, V.F. Zarytova, Sovremennye tendencii razvitiya nauki i tekhnologii [Modern trends in the development of science and technology] 8 (1) (2016) 32–38 (in Russian).

(63). A. Levina, I. Pyshnaya, M. Repkova, V. Rar, V. Zarytova, Biotechnol. J. 7 (2007) 879–885. Crossref

(64). A. Levina, E. Mikhaleva, V. Zarytova, Nucleoside Nucleotide Nucleic Acids 23 (2004) 931–934. Crossref

(65). I.I. Slowing, J.L. Vivero-Escoto, C.W. Wu, V.S. Lin, Adv. Drug. Deliv. Rev. 60 (2008) 1278– 1288. Crossref

(66). C. Bharti, U. Nagaich, A.K. Pal, N. Gulati, Int. J. Pharm. Invest. 5 (2015) 124–133. Crossref

(67). D.R. Radu, C.-Y. Lai, K. Jeftinija, E.W. Rowe, S. Jeftinija, V.S.Y. Lin, J. Am. Chem. Soc. 126 (2004) 13216–13217. Crossref

(68). I. Slowing, B.G. Trewyn, V.S.Y. Lin, J. Am. Chem. Soc. 128 (2006) 14792–14793. Crossref

(69). Y. Zhao, J.L. Vivero-Escoto, I.I. Slowing, B.G. Trewyn, V.S. Lin, Expert. Opin. Drug Deliv. 7 (2010) 1013–1029. Crossref

(70). F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. Int. 45 (2006) 3216–3251. Crossref

(71). T. Asefa, Z. Tao, Can. J. Chem. 90 (2012) 1015– 1031. Crossref

(72). A.L. Doadrio, A.J. Salinas, J.M. Sánchez- Montero, M. Vallet-Regí, Curr. Pharm. Des. 21 (2015) 6213–6819. Crossref

(73). S.H. Wu, C.Y. Mou, H.P. Lin, Chem. Soc. Rev. 42 (2013) 3862–3875. Crossref

(74). Q. Huo, D.I. Margolese, G.D. Stucky, Chem. Mater. 8 (1996) 1147–1160. Crossref

(75). C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992) 710–712. Crossref

(76). V. Antochshuk, M. Jaroniec, Chem. Mat. 12 (2000) 2496–2501. Crossref

(77). L. Jun, F. Xiangdong, E.F. Glen, Adv. Mater. 10 (1998) 161–165. Crossref

(78). B. Muñoz, A. Rámila, J. Pérez-Pariente, I. Díaz, M. Vallet-Regí, Chem. Mat. 15 (2003) 500–503. Crossref

(79). S. Moudgil, J.Y. Ying, Adv. Mater. 19 (2007) 3130–3135. Crossref

(80). M. Fujiwara, K. Shiokawa, K. Hayashi, K. Morigaki, Y. Nakahara, J. Biomed. Mater. Res. A. 81 (2007) 103–112. Crossref

(81). T. Suma, K. Miyata, Y. Anraku, S. Watanabe, R.J. Christie, H. Takemoto, M. Shioyama, N. Gouda, T. Ishii, N. Nishiyama, K. Kataoka, ACS Nano 6 (2012) 6693–6705. Crossref

(82). N. Gouda, K. Miyata, R.J. Christie, T. Suma, A. Kishimura, S. Fukushima, T. Nomoto, X. Liu, N. Nishiyama, K. Kataoka, Biomaterials 34 (2013) 562–570. Crossref

(83). J. Liu, A. Stace-Naughton, C.J. Brinker, Chem. Commun. (Camb) 34 (2009) 510–512. Crossref

(84). K.L. Young, A.W. Scott, L. Hao, S.E. Mirkin, G. Liu, C.A. Mirkin, Nano Lett. 12 (2012) 3867– 3871. Crossref

(85). K. Miyata, N. Gouda, H. Takemoto, M. Oba, Y. Lee, H. Koyama, Y. Yamasaki, K. Itaka, N. Nishiyama, K. Kataoka, Biomaterials 17 (2010) 4764–4770. Crossref

(86). T. Coradin, O. Durupthy, J. Livage, Langmuir 18 (2002) 2331–2336. Crossref

(87). G. Bhakta, R.K. Sharma, N. Gupta, S. Cool, V. Nurcombe, A. Maitra, Nanomedicine 4 (2011) 472–479. Crossref

(88). Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, S. Wang, Nanomed. Nanotechnol. Biol. Med. 11 (2015) 313–327. Crossref

(89). W. Cha, R. Fan, Y. Miao, Y. Zhou, C. Qin, X. Shan, X. Wan, J. Li, Molecules 22 (2017) E782. Crossref

(90). K. Wang, H. Yao, Y. Meng, Y. Wang, X. Yan, R. Huang, Acta Biomater. 16 (2015) 196–205. Crossref

(91). W. Ngamcherdtrakul, J. Morry, S. Gu, D.J. Castro, S.M. Goodyear, T. Sangvanich, M.M. Reda, R. Lee, S.A. Mihelic, B.L. Beckman, Z. Hu, J.W. Gray, W. Yantasee, Adv. Funct. Mater. 25 (2015) 2646–2659. Crossref

(92). Y. Chen, X. Wang, T. Liu, D.S. Zhang, Y. Wang, H. Gu, W. Di, Int. J. Nanomedicine 10 (2015) 2579–1594. Crossref

Published
2018-09-07
How to Cite
[1]
A. Levina, M. Repkova, Z. Ismagilov, and V. Zarytova, “Methods of the Synthesis of Silicon-Containing Nanoparticles Intended for Nucleic Acid Delivery”, Euras. Chem. Tech. J., vol. 20, no. 3, pp. 177-194, Sep. 2018.
Section
Articles